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Although the ambiguity of the crystal structures determined directly from

diffraction intensities has been historically recognized, it is not well understood

in quantitative terms. Bernstein’s theorem has recently been used to obtain the

number of one-dimensional crystal structures of equal point atoms, given a

minimum set of diffraction intensities. By a similar approach, the number of two-

and three-dimensional crystal structures that can be determined from a

minimum intensity data set is estimated herein. The ambiguity of structure

determination from the algebraic minimum of data increases at least

exponentially fast with the increasing structure size. Substituting lower-

resolution intensities by higher-resolution ones in the minimum data set has

little or no effect on this ambiguity if the number of such substitutions is

relatively small.

1. Introduction

A fundamental consequence of the loss of phase information

in a diffraction experiment is that a crystal structure cannot be

determined uniquely from intensities (Ihkl) alone, even if all

Ihkl are known and error-free. This ambiguity was recognized

many decades ago by Pauling (Pauling & Shappell, 1930) and

Patterson (1944), but it has not been analyzed quantitatively.

Around the same time, Ott (1927) and later Avrami (1938)

formulated the problem of structure determination from a

minimum of intensities in algebraic terms; however, how many

structures can be obtained as a result is not known to this day,

and no practical method of solving this algebraic problem has

emerged yet. These original algebraic ideas were elegantly

expanded more recently (Cervellino & Ciccariello, 1996),

when the authors pinpointed the difficulties of developing a

practical algebraic method due to the structure ambiguity,

further exacerbated by experimental errors. Nevertheless,

later they demonstrated that algebraic structure determina-

tion can be achieved for small structures of one-dimensional

crystals, with added bond-length constraints and noted a large

structure ambiguity (Cervellino & Ciccariello, 1999). Recently,

by applying Bernstein’s theorem to the problem of deter-

mining the structure of an idealized one-dimensional crystal

from the algebraic minimum of intensities, we obtained the

structure ambiguity for this oversimplified case of a one-

dimensional crystal of identical point atoms as a function

of the number of atoms in the unit cell (Al-Asadi et al.,

2012). Here, we apply Bernstein’s theorem to establish this

ambiguity for the realistic cases of three- and two-dimensional

crystals.

2. Theoretical background

The determination of crystal structures of N equal point atoms

in the unit cell with fractional coordinates (xj, yj, zj), j = 1,

2, . . . , N � 1 and (xN, yN, zN) = (0, 0, 0), after proper

normalization, is equivalent to solving the following system of

polynomial equations:

Ihkl ¼ 1þ
XN�1

j¼1
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j �

k
j �

l
j

 !
1þ
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where �j = exp(2�ixj), �j = exp(2�iyj), �j = exp(2�izj) and

different equations (1) correspond to different choices of

integer values of h, k and l. All �j = 1 and all �j = �j = 1 for two-

dimensional and one-dimensional crystals, respectively.

Therefore, for one-, two- and three-dimensional crystals, the

minimum of N � 1, 2(N � 1) and 3(N � 1) error-free inten-

sities, respectively, define a polynomial system that is, in

principle, sufficient for structure determination. However,

because this minimum system is composed of polynomial

equations of high powers, it has many solutions, i.e. many

structures yield the same intensities. Because of the sparsity of

this system, the upper bound on the number of solutions given

by the Bezout theorem (Newton et al., 1729) vastly over-

estimates the number of its solution. A number of solutions of

such sparse systems can instead be accurately estimated by the

so-called mixed volume of the system, as stated in Bernstein’s

theorem (Bernstein, 1975). This approach is used here.

For a one-dimensional crystal of N atoms in a unit cell, the

lowest resolution set of N� 1 intensities is constructed as Ih,

h = 1, 2, . . . , N � 1, since the negative h correspond to the
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Friedel pair counterparts. For two- and three-dimensional

crystals, more than one index can increase in absolute value

with increasing resolution. Whether an (h, k, l) triplet corre-

sponds to an observable reflection is determined by the

resolution, the geometry of the crystal lattice and the

experimental setup. We will consider a generic scenario of a

triclinic lattice with unit-cell parameters a ’ b ’ c and � ’ �
’ � ’ 90� and will assume that the data are complete to a

given resolution limit. In this case, the resolution of a reflec-

tion (h, k, l) increases with h2 + k2 + l2 (or to h2 + k2 for a two-

dimensional crystal). We will also assume that the Friedel law

holds and, to avoid including Friedel pairs into the data set, we

will consider only reflections {h > 0, any k, l}, {h = 0, k > 0,

any l}.

3. Results

3.1. The number of crystal structures obtained from the
minimum of intensities when reflections lie on the axes of the
reciprocal lattice

First, we will consider an idealized scenario when minimal

system (1) is obtained for the reflections that lie on the

reciprocal-lattice axes. Namely, the 3(N � 1) intensities of the

minimum set are Ih00, I0k0 and I00l, where h, k, l = 1, 2, . . . ,

N � 1. Equivalently, one obtains this case by omitting some

low-resolution reflections Ihkl in the experimentally measur-

able set and instead including the above higher resolution

ones on the reciprocal-lattice axes. As a consequence some

equations in system (1) get replaced by equations of higher

total degree (defined for each equation as h + k + l). This

replacement leads to the increase in the number of possible

solutions of system (1) (analogous to the increase of the

number of solutions of a univariate polynomial equation as its

degree increases), which is why the number of solutions in this

idealized case is an upper bound. For this choice of reflections,

the unknown coordinates (�j, �j, �j) in system (1) separate:

Ih00 ¼
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; h ¼ 1; . . . ;N � 1;
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and the equations for I0k0 and I00l have the same functional

form as system (2). System (2) is equivalent to the one-

dimensional crystal structure determination problem (Al-

Asadi et al., 2012; Shkel et al., 2011). The number of all solu-

tions of this system was recently obtained by our group (Al-

Asadi et al., 2012) as

n1D ¼
½2ðN � 1Þ�!

ðN � 1Þ!
: ð3Þ

Because the solutions for each coordinate are independent of

each other in this case, the numbers of solutions of equation

(1) and its two-dimensional analog are equal to the cube and

the square of the above number, respectively. To obtain the

number of unique structures, one then needs to divide these

numbers by 2N!, to take into account the permutation of the

atoms and the enantiomer obtained as a result of the center of

symmetry operation on each structure (for N = 2, these two

operations are equivalent; therefore, in this case the factor of

two is absent). We obtain

n3D
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where the expressions for N >> 1 are obtained by applying the

Stirling approximation.

As explained at the beginning of this section, these factorial

dependences of the numbers of unique structure solutions of

system (2) generally greatly overestimate the numbers of

unique structure solutions of system (1) obtained when the

reflections do not necessarily lie on the reciprocal coordinate

axes.

3.2. The lower bound on the number of crystal structures
obtained from the minimum of intensities

To obtain a lower bound on the number of solutions of

system (1), we will consider a practical case where reflections

fill resolution shells completely with the increasing number of

intensity data. We applied Bernstein’s theorem (Bernstein,

1975) to system (1) by using an approach that was previously

applied to a one-dimensional crystal (Al-Asadi et al., 2012).

The algebraic terminology and the formulation of Bernstein’s

theorem used in this study are the same as those published

previously (Al-Asadi et al., 2012) and, for convenience, are

given again in the supporting information,1 along with the

technical details of the derivations. The so-called mixed

volume, which we defined for this system previously (Al-Asadi

et al., 2012), is a good approximation of the total number of

solutions of system (1), by Bernstein’s theorem (Bernstein,

1975). The mixed volumes are, for a three-dimensional and a

two-dimensional crystal, respectively (equations A11 and A12

in the supplementary material):

Vmix;3D �

(
½2ðN � 1Þ�!

½ðN � 1Þ!�3

)3

ðN � 1Þ!
½3ðN � 1Þ�!ð9=2�ÞN�1

6N�1
; ð6Þ

Vmix;2D �

(
½2ðN � 1Þ�!

½ðN � 1Þ!�3

)2

ðN � 1Þ!
½2ðN � 1Þ�!

�N�1
: ð7Þ

The number of unique structure solutions is obtained by

dividing these values by 2N!, where N! is a number of

permutations of coordinates of the N identical atoms in the

structure and the factor of two accounts for the centro-

symmetrical enantiomer ambiguity (except for N = 2, in which

case the factor of two is absent, because these two operations

are equivalent). We obtain:
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notation and the formulation of Bernstein’s theorem discussed in this paper is
available from the IUCr electronic archives (Reference: SC5073).
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Finally, combining these lower bounds with the overestimate

obtained in x3.1 for all consecutive reflections on the reci-

procal axes into the same expression and applying the Stirling

approximation at large N yields:

362N
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Inequalities (10) and (11) show that the lower bound on the

number of unique structures increases exponentially with N

at large N, more strongly with increasing dimensionality

(previously we obtained n1D
uniq � 4N for large N; Al-Asadi et al.,

2012). If reflections located only on the reciprocal axes are

available, which is a simplifying, but not a realistic scenario,

then the number of unique solutions [the upper bound in

inequalities (10) and (11)] increases faster than exponentially

(factorially), underscoring the increase in ambiguity as one

replaces lower-resolution reflections with higher-resolution

ones. The numerical values for these bounds are given in Table

1 for N � 20. The ambiguity can be even larger, if low-

resolution reflections are replaced by higher-resolution ones,

as analyzed in x3.3.

3.3. Effect of replacing lower-resolution data by higher-
resolution ones on ambiguity of crystal structure determina-
tion from a minimum intensity data set

Experimental data sets normally contain missing reflections;

for example, the lowest-resolution reflections can be blocked

by a beam-stop device. We investigated quantitatively how the

ambiguity of structure determination changes as a result of

increasing the resolution of the data set while keeping

constant the number of data at its algebraic minimum. For

different minimum data sets, we calculated the exact mixed

volumes by using MixedVol software (Gao et al., 2005; Li & Li,

2001) and obtained the number of unique three- and two-

dimensional crystal structures (by dividing these values by

2N!). These calculations were carried out for small N, as for

larger N such calculations are computationally prohibitive. For

each N, we first considered a set at a minimum resolution and

then gradually increased the resolution of this set by substi-

tuting one or more of the lower-resolution reflections with

higher resolution ones (Tables 2 and 3). These results

demonstrate that a gain of a relatively few high-resolution

reflections at the expense of a loss of low-resolution ones has

only a minor effect on the ambiguity of crystal structure

determination, and, in some cases, even reduces the ambiguity.

An increase in ambiguity (if any) for such a small number of

substitutions is much smaller than that for placing all the

reflections on the reciprocal axes (Table 1, upper bound), or

for increasing the structure size N.

4. Discussion

The problem of crystal structure determination from a

minimum of experimental data was formulated in the alge-

braic form nearly a century ago (Ott, 1927), when neither

analytical nor computational algebraic tools needed to deal

with such treatment existed. With an advent of such tools in

the last 15–20 years, we are in a position to analyze this

problem and adapt these mathematical techniques to this

specific problem. We showed previously that the ambiguity of

solutions of polynomial system (1) for the one-dimensional

case, when by definition all reflections lie on the reciprocal

axis, increases exponentially. In this study, we analyzed more

realistic cases of three- and two-dimensional crystals, where

reflections can lie off the axes. Despite the fact that an efficient

distribution of the reflections, when they gradually fill reso-

lution shells from lowest to highest, is achievable in these

cases, increase in ambiguity with increasing structure size is

still, at best, exponential. Moreover, it becomes more dramatic
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Table 1
Lower and upper bounds on the number of unique three- and two-
dimensional crystal structures obtained from the minimum of lowest
resolution diffraction data for N � 20.

Three-dimensional Two-dimensional
N n3D

uniq, lower bound† n3D
uniq;axes n2D

uniq, lower bound‡ n2D
uniq;axes

2 4§ 4 2§ 2
3 26§ 144 6§ 12
4 1576§ 36000 56§ 300
5 3860494 19756800 850§ 11760
6 7.83 	 108 1.92 	 1010 4357 635040
7 1.79 	 1011 2.92 	 1013 58612 43908480
8 4.46 	 1013 6.42 	 1016 836513 3.71 	 109

9 1.18 	 1016 1.93 	 1020 12481425 3.71 	 1011

10 3.30 	 1018 7.57 	 1023 1.93 	 108 4.29 	 1013

11 9.57 	 1020 3.77 	 1027 3.06 	 109 5.63 	 1015

12 2.87 	 1023 2.33 	 1031 4.97 	 1010 8.28 	 1017

13 8.82 	 1025 1.75 	 1035 8.23 	 1011 1.35 	 1020

14 2.78 	 1028 1.56 	 1039 1.38 	 1013 2.41 	 1022

15 8.91 	 1030 1.64 	 1043 2.36 	 1014 4.68 	 1024

16 2.91 	 1033 1.99 	 1047 4.07 	 1015 9.83 	 1026

17 9.64 	 1035 2.80 	 1051 7.09 	 1016 2.22 	 1029

18 3.23 	 1038 4.47 	 1055 1.25 	 1018 5.38 	 1031

19 1.10 	 1041 8.06 	 1059 2.21 	 1019 1.39 	 1034

20 3.76 	 1043 1.63 	 1064 3.95 	 1020 3.80 	 1036

† The numbers are calculated from the expressions in inequality (10). ‡ The numbers
are calculated from the expressions in inequality (11). § Because the accuracy of
inequalities (10) and (11) decreases with decreasing N (as explained in the supporting
information), the lower bounds for the smallest N were obtained from exact mixed
volumes computed by MixedVol software (see Tables 2 and 3).



with increasing dimensionality. For a popular simplification,

when the reflections lie on the reciprocal axes, increase in the

ambiguity is even faster: it is factorial. These results demon-

strate that, even if one can readily obtain all the structures that

satisfy a minimum set of error-free intensities, finding the

correct one from such a data set is not computationally

feasible even for a reasonably small value of N. Does this

mean that the algebraic approach should be dismissed? In

attempting to answer this question one should take into

consideration two key differences of this idealized problem

from the practical experimental one, which offset each other:

(1) the set of the intensities greatly overestimates the number

of atomic coordinates (typically, 50–150-fold in small molecule

crystallography and 3–20-fold for macromolecular

crystallography) and (2) intensity values contain

experimental error and they do not satisfy exactly any

one theoretical model, including system (1). Property

(1) is key to reducing the ambiguity and, as demon-

strated by traditional direct methods (Karle &

Hauptman, 1957, 1958; Sheldrick, 2008; Weeks &

Miller, 1999), allowing one to determine structures

from intensities for a sufficiently small number of

atoms and overcoming the increase in ambiguity due

to property (2). The algebraic approach appears to

have a potential of overcoming the restriction on the

number of atoms, but it remains to be seen whether

this potential is to be realised by modern computa-

tional methods. Ongoing research in our group is

exploring these techniques towards developing new

structure determination methodologies or improving

existing ones.
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Table 2
Numbers of three-dimensional unique crystals structures calculated from the exact mixed volumes computed with MixedVol software for different sets
of the algebraic minimum number of reflections.

Set N R† Minimum reflection set (h, k, l) Vmix

n3D
uniq =

Vmix/(2N!)

1 2 1 (100), (010), (001) 8 4‡
2 2 (110), (010), (001) 8 4‡
3 2 (100), (010), (01�11) 8 4‡
4 2 (100), (011), (001) 8 4‡
5 3 2 (100), (010), (001), (110), (101), (01�11) 312 26
6 2 (100), (010), (001), (110), (101), (011) 420 35
7 3 (100), (010), (001), (110), (101), (111) 312 26
8 4 3 (100), (010), (001), (110), (101), (011), (01�11), (1�111), (1�11�11) 93304 1943
9 4 (100), (010), (001), (110), (101), (011), (111), (200), (020) 79360 1653
10 5 (100), (010), (001), (110), (101), (011), (111), (200), (120) 82976 1728
11 6 (100), (010), (001), (110), (101), (011), (111), (211), (020) 75648 1576

† R = h2 + k2 + l2, a parameter that increases with increasing resolution of the data. ‡ For N = 2, n3D
uniq = Vmix/N!, as explained in the text.

Table 3
Numbers of two-dimensional unique crystals structures calculated from the exact
mixed volumes computed with MixedVol software for different sets of the algebraic
minimum number of reflections.

Set N R† Minimum reflection set (h, k) Vmix

n2D
uniq =

Vmix/(2N!)

1 2 1 (10), (01) 4 2‡
2 2 (10), (11) 4 2‡
3 2 (1�11), (11) 8 4‡
4 4 (10), (02) 8 4‡
5 3 2 (10), (01), (1�11), (11) 72 6
6 4 (10), (01), (11), (20) 72 6
7 5 (10), (01), (21), (20) 72 6
8 5 (10), (01), (11), (21) 72 6
9 5 (10), (21), (11), (20) 72 6
10 4 4 (10), (01), (11), (1�11), (20), (02) 3200 66
11 5 (10), (01), (11), (20), (02), (21) 3808 79
12 5 (10), (01), (12), (20), (02), (21) 7008 146
13 5 (10), (01), (11), (20), (12), (21) 3504 73
14 5 (10), (21), (01), (11), (1�11), (20) 2704 56
15 10 (10), (31), (11), (20), (02), (21) 5408 112
16 5 5 (10), (01), (11), (1�11), (20), (02), (21), (12) 204160 850
17 8 (10), (01), (11), (20), (02), (21), (12), (22) 227840 949
18 9 (10), (01), (11), (30), (02), (21), (12), (22) 341670 1423
19 10 (10), (31), (11), (20), (02), (21), (12), (22) 460160 1917
20 13 (10), (01), (11), (20), (02), (21), (32), (22) 279680 1165

† R = h2 + k2, a parameter that increases with increasing resolution of the data. ‡ For N = 2, n3D
uniq =

Vmix/N!, as explained in the text.
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